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The statistical thermodynamics of systems displaying selective behavior is used 
to discuss some important ultimate physical limitations of computers and bio- 
logical systems. These cluster around communication of information, measure- 
ment, and irreversible processes. The most fundamental limitation is irreducible 
increase of entropy accompanying selective acts like measurement or prepara- 
tion. Relevant theory of machines (automata, Turing machines) and issues 
involved in physical realizations of those machines are discussed. Quantum 
measurement, the Einstein-Podolsky-Rosen paradox, the fundamental impor- 
tance of irreversibility, information and entropy, and their relation to Goedel's 
theorems on completeness and consistency of formal systems are analyzed. 
lrreversibility of measurement appears necessary, to provide quantum mechanics 
with the incompleteness needed to avoid inconsistency. Motivation and justifica- 
tion of computer paradigms for fundamental modeling of biological systems is 
given. 

1. INTRODUCTION 

Computers and living systems share many characteristics: they behave 
selectively, show tremendous differences in response to similar inputs, and 
are nonequilibrium systems, generally metastable. They usually require 
ongoing dissipation to maintain their characteristic behaviors, which depend 
on stored information. Both involve loosely coupled subsystems, use 
elaborate internal communication and control systems, and key interactions 
within them and with their environments are typically irreversible and "all 
or nothing" (nonlinear). This paper probes some ultimate limitations on 
complex system function connected with irreversibility. 

Selective behavior presupposes a system exhibiting that behavior by 
interacting with another system (environment, world) with respect to which 

327 

0020-7748/82/0400-0327503 GRI/O r Plenum Publishing Corporation 



328 Rothstein 

that behavior is displayed. The boundary between them need not be fixed or 
sharp; any selective system (SS) can be viewed as a subsystem of a global 
SS. The SS usually consists of many interacting subsystems which can be 
SSs individually: a subset of the set of subsystems is then an (internal) 
environment of any one. Discussion of ultimate limitations in SS performance 
has all the problems of quantum measurement and preparation to confront as 
its simplest case. 

As an SS is more macroscopic than microscopic, we use the following 
idealization to deal with it. We endow it with some (generally large) set of 
discrete gross states (B-states) which are behaviorally distinguishable, i.e., 
there exist well-defined input sequences for which distinguishable (i.e., 
measurable) output behaviors are obtained for any pair of states. They can 
have the same or very different energies, and are generally mutually 
inaccessible ergodically unless an appropriate sequence of B-state transi- 
tions is induced by receipt of an input (control) sequence. Output sequences 
(behavior) are functions of input and B-state sequences. B-state change can 
alter the boundao' conditions defining the solutions of dynamical equations 
describing an SS and thus, generally indicates preparation of the SS anew. 
Both the phase space and the quantum language needed to describe the 
system can change, as can gross operative constraints or internal boundary 
conditions, as with changes in setting a switch, or turning a valve. Different 
behaviors can be programmed, via controlled impositions and relaxations of 
boundary conditions or constraints, and changing a program can even be 
viewed as preparing a new SS. 

The centrality of boundary conditions, with particular reference to 
biology, is stressed in Rothstein (1979a). The present paper is a sequel to 
this one (which contains many references); both are sequels to Rothstein 
( 1971). This last reviews many aspects of the informational generalization of 
physical entropy, and notes the immediate connection between it, specifica- 
tions and boundary or initial conditions. Also relevant is Rothstein (1967). 
Operational implementation of a specification or boundary condition, pre- 
paring a system, or measuring a system, are macroscopic irreversible proce- 
dures. We find it natural, therefore, to view measurement as logically prior 
to quantum mechanics in the sense that the ve O, possibility of confronting 
quantum mechanics ( QM ) with experience presupposes a macroscopic concept 
of measurement, and preparing a quantum system presupposes a macroscopic 
preparation procedure. 

The discussion of mixtures, measurement, and irreversibility of von 
Neumann (1955) is consistent with this operational approach, and clearly 
exhibits the arbitrary placement of the division between system observed or 
prepared and means used to observe or prepare it. Bohr's (1935) emphasis 
on the quality of wholeness of QM systems again points to the logical jump 
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necessary to go from quantum object to macroscopic objects. Ordinarily it is 
effectively absorbed into a boundary condition. The different conditions on 
the two "sides" are handled by different concepts and methods, the boundary 
itself being both intractable and arbitrary. Until system of interest and 
means of observation or preparation interact, or after their interaction, 
when they are again separate, both entities can be treated individually as 
quantum systems. As they are effectively a single system while interacting, 
the transition to two systems (reduction of the wave function, EPR thought 
experiment) is a jump in viewpoint or specification not described by the 
SchrOdinger equation of the compound system which is reflected in the 
irreversible nature of measurement. This irreversibility is posited, not derived, 
and we believe this is necessarily the case. 

Boundary conditions determine what specific solutions of the dynami- 
cal equations are appropriate. Controlled (prepared) by the experimenter, 
they are part of the specification of the physical problem, and therefore are 
not derivable from the dynamical equations of the system. To maintain the 
opposite requires one to swallow a self-referential fallacy or an infinite 
regression. The latter corresponds operationally to the fact that regarding 
the compound system as a quantum system requires yet another system to 
prepare it in a state ~12 which will evolve into two subsystems in states ~ 
and q~2- 

In any SS (which can be an SS and its world), two subsystems must 
interact to make information transfer possible between them. One can say 
either that the information source prepares the receiver, changing its B-state 
from one in which the message has not been received to another indicating 
it has, or that the receiver is a means for observing the source, receipt of the 
message indicating the source has entered a postemission B-state. But in a 
computer, say, interest generally centers in sequences of changes of B-state. As 
these are boundary condition changes, measurement or preparation acts 
which are essentially irreversible, computer "metabolism" (or biological 
metabolism) is a dissipative process unless there are no B-state changes. 

In principle there is no reason to believe it impossible to construct 
systems, biological or computational, in which the only irreversible steps are 
preparation of the system initially, and final measurement of its time-evolved 
state. Viruslike behavior, where a viral system is involved in irreversible 
activities essentially only during its reproductive and measurement (i.e., 
attack or host cell recognition) phases is suggested as a biological case of 
this kind. The corresponding computational concept is reversible comput- 
ing, so named because time evolution of the system between programming 
(preparation) and final read-out of the result is governed entirely by its 
dynamical equations, and thus reversible. We stress that neglect of irreversi- 
bility associated with measurement or preparation of initial or boundary 
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conditions implies violation of the second law (Szilard, 1929) and the 
paradoxes of Loschmidt and Zermelo (Rothstein, 1957, 1974). The work of 
Bennett (1973, 1982), Benioff (1980, 1982), Fredkin and Toffoli (1982), 
Landauer (1961), Likharev (1982), and Toffoli (1981) shows that on classi- 
cal, quantum, and thermodynamic grounds general computations can be 
done reversibly in the above sense, where entropy production is "exported" 
into the boundary conditions, and/or  the computation is done very slowly. 
Computing at realistic rates, or having a general purpose computer (as 
contrasted to a special purpose or fixed program computer) may entail 
prohibitive difficulties for entropy export into a fixed boundary condition. 
Conditional branch instructions, for example, seem to require both a 
measurement to determine whether or not the condition holds, and the 
setting up of a new boundary condition depending on the outcome, unless 
both paths have been "built in." The latter appears to require that a general 
purpose machine with several branch instructions be exponentially infinite. 
A finite machine would have to acquire one bit of information at each 
branch, and by Szilard (1929) and Rothstein (1951) this entails an entropy 
cost not less than k ln2. Whether as an initial setup cost, information 
acquisition costs, or information read-out cost, there is an irreducible entropy 
cost for a computation, independent of temperature. 

For surveys of other fundamental limits of general interest here see 
Keyes (1981) (digital processing), Wyner (1981) (information theory), 
Personick (1981) (optical communication), Kogelnik (1981) (integrated 
optics), and Cooper (1981) (field-effect devices). Among other sources of 
system limitations we note the following. Programming languages or algo- 
rithms can be inefficient. The monitor, or operating system, may not make 
optimal use of computer resources. Concurrent processes may be in compe- 
tition for the same resource. Queues can develop in one area with other 
areas underutilized, and routines to relieve the situation may even intensify 
the problem. It is not clear what fundamental physical limitations might 
exist here. 

2. SELECTIVE BEHAVIOR, B-STATES, AND AUTOMATA 

We need to define B-states in a manner achieving realistic reconcilia- 
tion of the notions of state used in computer science and in physical science. 
The first is discrete, the second frequently continuous. Time variation of the 
first is freely programmable; equations of motion of physical systems are 
unalterable dynamical laws. The classes of computations performable by 
nondeterministic finite state automata or Turing machines are respectively 
identical to those performable by deterministic finite state machines or 
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Turing machines. In physics the distinction is a fundamental difference 
between classical and quantum mechanics which played a conceptually 
revolutionary role. In computers, there is no problem in principle in 
specifying the state and subsequent behavior of the system completely. In 
physics, quantum mechanics sets limits on both. In computer science, given 
the state of a deterministic system, it is generally impossible to specify the 
preceding state; physics is dynamically reversible. In a sense clear from the 
above, computer science is irreversible and deterministic, physics reversible 
and nondeterministic. 

Clearly, neither pure quantum states nor classical states can generally 
be identified with B-states. We can represent B-states as mixtures or 
generalizations of the concept of thermodynamic state. Because they are 
constructs in operationally different languages, those of microscopic and 
macroscopic states, respectively, we should distinguish between them. 

The simplest state concept in computer science occurs with the finite 
state automaton (FSA), and can be introduced simultaneously with inputs, 
outputs, and transitions (see Hopcroft and Ullman, 1979; Denning, Dennis, 
and Qualitz 1978; Ginzburg, 1968). Write 

A = ( Q , Z , s  

where A is an FSA, presented as a 5-tuple. Here 

Q={qo,q t  .....  q,,, t} 

(t) 

(2) 

is a finite set of states, 

2 : =  {o0,o~ . . . . .  o , , - i )  (3) 

is a finite set of inputs (input alphabet), and 

s = { ~o, w, . . . . .  wp_, } (4) 

is a finite set of outputs (output alphabet). M and N are mappings, whose 
common domain is the Cartesian product Q x Z with respective ranges Q 
and s 

M : Q X Z - , Q  (5a) 

N: Q X Y, ~ s (5b) 

called, respectively, the next state function and the output function. Nonde- 
terministic machines have M or N are weakened to be relations rather than 
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functions. In many cases, e.g., formal language recognition, it is necessary to 
designate a standard initial state qo, often included as a sixth symbol in (1). 
Output symbols are associated either with states (Moore machine) or with 
transitions (Mealy machine), the latter useful in communication circuits, the 
former in systems capable of storing a finite amount of information. In a 
language recognizer (acceptor) it is customary to suppress ~2 and N in (1), 
include qo, and designate a subset F of Q as "final" or accepting states. A 
word (or string) w consisting of symbols of Y is accepted if and only if, 
when A is started in qo, the sequence of stale changes induced by feeding in 
w, symbol by symbol, terminates in a state ,:if of F. The output ~2 is then 
"accept"  for {q~E F )  and "reject" for { q ~  Q - F) .  Instead of (1) we have 

A = ( Q , E , M ,  q o , F )  (6) 

It is often convenient to present A as a labeled directed graph. Its nodes 
correspond to states, generally drawn as circles containing the labels q,, 
which for Moore machines also contain the appropriate output ~j(q,i~oj is a 
frequently used notation). For acceptors the wj label is replaced by a double 
concentric circle for all q, in F. A short arrow with head on the circle 
indicates qo. If input o i induces a transition from qs to qk, an arrow is drawn 
from qj to qk and labeled by o,; in a Mealy machine the output, say w~, also 
labels the arrow, with o~]~ a commonly used notation. 

Figure 1 shows a simple 3-state machine: when fed an arbitrary string 
w over the binary alphabet 

= (0 .1 )  (7) 

it computes the remainder on division by 3 if the string is interpreted as a 
base 2 integer. Were one only interested in multiples of 3, state [0] would 
have a double circle. The outputs 0, 1, 2 are used as state names; output i 
comes only from state q, so q can be suppressed. The square brackets 
emphasize that entire remainder classes consist of equivalence classes of 
strings, interpreted as transformations on the set of states. Using the 
postoperator notation 

qiw = qj (8) 

to mean that when A is in state q~, if word w is fed in, symbol by symbol, 
the new state will be qs' and letting E mean "is equivalent to," we have 

wlEw 2 if and only if qiwl = qiw2, qi ~ Q (9) 



S e l e c l i v e  Systems: Computation and Biolog) 333 

I O 

Fig. I. FSA which classifies binary, stnngs,  interpreted as integcrs, according to the remainder 
on division by 3. It is a group machine whose group is D 3 

Labels designating blocks (equivalence classes) of equivalence relation E can 
serve as state names. In general any equivalence relation of finite index (i.e., 
with a finite number of blocks) satisfying (9) defines the minimal state 
automaton capable of classifying all strings over ~ according to block 
membership. Strings over 5: form a free semigroup (S, say) under con- 
catenation with Y. as generators. As there is an identity (the null string ),) 
the semigroup is a monoid by definition. We can now see that there is a 
finite semigroup of transformations, S A, on the states Q of A, induced by 
elements of S, which is a homomorphic image of S. The homomorphism 
involved is a mapping 

h: S -~ S~, S~ = S / e  (lO) 

i.e., $4 is the quotient monoid of S by equivalence relation E. In the 
example of Figure 1, S a is a group isomorphic to D 3 (symmetry group of the 
equilateral triangle). Recall that a group is a monoid with an element 
inverse to any given element, i.e., for any x ~ G there exists a unique x -  ~ E G 
such that x x  ~ = e, where e is the identity. In automata theory, A is a group 
machine (i.e., $4 is a group) if and only if for every o,E Z we can find a 
string % over Z such that o~cqEh. Alternatively, S~ is a group if and only if 
every o,E ~ permutes the states. A o, that transforms any state into one 
particular state is called a reset input, and a machine which is reset by all 
inputs is called a reset machine. An example is shown in Figure 2, which 
gives the remainder, on division by 2, of any binary number. The monoid of 
a reset machine is extremely simple: o~ojEoj. Resets are idempotent, like 

projection operators P(P2  = p) .  
Two machines are equivalent if they always produce the same outputs 

for the same inputs, i.e., have the same input -output  behavior. An im- 
portant  structural theorem states that the general FSA is equivalent to 
cascaded or direct products (essentially like series-parallel connections) of 
simple machines of two types, group machines and two-state reset machines. 

We now try to combine physical and automaton state concepts into a 
generalization including both. We consider both what is involved in physical 
realization of an abstract automaton, and how a physical system can be 

presented as an automaton. 
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I 

Fig. 2. FSA which classifies binary strings, interpreted as integers, according to the remainder 
on division by 2. It is a reset machine. 

To realize a particular automaton A requires an information source to 
emit Z-signals and a physical system with a set of gross states in one-to-one 
correspondence with Q, in any of which, on receipt of a Z-signal, the system 
either emits an f~-signal and makes a transition to the same or another gross 
state (Mealy machine), or which, after making the transition, has the 
~2-signal available as the result of a measurement made on the system in the 
new gross state which does not perturb the gross state (Moore machine). 
These gross states partition the phase space of all relevant microstates of the 
system. Until receipt of a Z-input ergodic wandering of its representative 
point keeps it within a region of phase space corresponding to gross state 
B~. Receipt of a Z-input induces a transition to gross state B 2. As antic- 
ipated by the notation we identify the blocks (ergodic components) of this 
partition with B-states. Whether a B-state is taken as an equilibrium, steady, 
or nonsteady macroscopic state is of no importance here. The buffetings of 
the representative point can be random shocks as long as they do not cause 
B-state changes with appreciable probability; one measure of system unreli- 
ability is the probability that a B-state change is random, rather than 
controlled. Low-temperature operation or making the barrier E against 
spontaneous B-state transitions very large ( E / k T  >>1) enhances SS reliabil- 
ity. 

There is much similarity here to the operational discussion of quantum 
measurement by Lamb (1969). He considers a three-stage process to be 
involved: initial state preparation, perturbation, and examination for the 
probability that a particular final state is occupied. The first stage, for a 
particle, say, might involve catching it in a potential well U~(x) chosen to 
make its lowest energy eigenfunction be the state q,(x,0) which one desires 
to prepare. Let its excess energy radiate away and the state is prepared. In 
the perturbation stage, we suddenly turn off U~ and turn on the perturba- 
tion V, after which the wave function evolves according to Schr6dinger's 
time-dependent equation. Then we turn off V and turn on another potential 
cleverly chosen to yield the occupation probabilities of the states it is 
desired to measure. The underlying similarity between this and our discus- 
sion is easy to see- - the  first well corresponds to initial B~, the second to 
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final B 2, the perturbation to channel. Our simple theory gives the additional 
insight that lower barriers suffice at low T. 

We require either that the N-input surmount E (impractical), or that it 
function catalytically to allow a phase space channel to develop between 
initial and final Q-blocks. In the latter case the probability that the 
representative point wanders quickly into the final block must be over- 
whelming, and after it has done so, the channel must be closed again (unless 
it is supposed to return to the initial B-state). The first step requires entropy 
increase, the second needs energy, which is usually dissipated. The justifica- 
tion for this was given originally in Rothstein (1979) in an analogous 
biological context. 

Let q~ and q~2 be the phase volumes of blocks corresponding to B-states 
B~ (initial) and B 2 (final), respectively. Their entropies will then be 

S I = k log~ 1 (11) 

$2 = klog~ 2 (12) 

When the channel is opened the accessible phase volume ~ becomes 

= ~1 + ~2 (13) 

The corresponding entropy S is 

S = klog(qh +q'2) (14) 

The entropy increase consequent to this increase in phase volume is given by 

A , S =  S -  S~-- klog(1 + ~ 2 / ~ , ) > 0  (15) 

When the channel is closed, trapping the representative point in q'2, the 
entropy had to be decreased by an amount 

A2S= S -  S 2 = klog(1 +q5 , /~2 )>0  (16) 

By the second law of thermodynamics an entropy increase occurs elsewhere 
of at least this much. Ordinarily an amount of energy AE would have to 
dissipated to reduce the entropy by A2S. Taking T as the temperature at 
which A E is dissipated, 

AE>~TA2S=kT log(1 + qh/q~2) >0  (17) 

Clearly, by taking T low enough, AE can be made arbitrarily small, but even 
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with approach to absolute zero the total entropy change AS can not be 
reduced below the value given by (15). It is thus a fundamental limitation (as 
noted earlier) required by thermodynamics, which is essentially irreversibil- 
ity of measurement or preparation. 

The idealization is often made in thought experiments that opening or 
closing a channel is performed with arbitrarily small energy or entropy cost. 
We believe this is admissible here; channel opening can then be done by a 
E-signal. In effect the energy and entropy cost, if any, can be charged to the 
Z-source preparation as in reversible computing. But closing the channel 
must occur sufficiently long after opening to permit the representative point 
to stream into 4'2 (or 02 -[- ~' with subsequent diminution by 4,') but not so 
long after that it might have streamed back into 4h. The larger q~2/4~ (or 
0 2 -  q'~ ), the less onerous is this "Poincar6 recurrence" condition. Suppose 

~ 2 / ~ t = n ~ l  (18) 

Then 

AS ~ A i S  ~ k log n (19) 

Reliable closure may thus require large (energy or) entropy cost in practice. 
This can be done with amplification: the E-input is the trigger or trap-door 
opener; the energy released (and usually dissipated) closes it. 

To conclude this section we verify that any physical system can be 
viewed as an automaton and how resets correspond in a natural way to 
irreversible interventions in the dynamical evolution of a system. 

Consider a system whose state is determined by n variables x~, x 2 . . . . .  x,,, 
subject to 

dx,/dt -- x , ( x ,  . . . . .  xn)  (20) 

The state qo(x~...x,,), which depends on t through the x,, is "told" to change 
to state q~ + dqo in time dr, where 

- -  y(a /ax, ) ( a x , / d t  ) at 

= ( X - V e p ) d t  (21) 

where the vector X is given by 

. . . . .  x,,) (22) 
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We can say that state % with input X, makes a transition to state 9~ + d% 
The output set is x,(t  + dt), where 

x i ( t + d t ) = x i ( t ) +  Xidt (23) 

Alternatively, the n-vector 

x = ( x , , x  2 . . . . .  x , )  (24) 

can be called both state and output. In QM cp is the wave function and (20) 
the time-dependent SchriSdinger equation 

Hq~ = - ( h/27ri)  aep/at (25) 

From Lie group theory the input monoid of (20) or (25) is a realization 
of the one-parameter translation group (n-dimensional or infinite- 
dimensional flows, respectively), namely, the group of contact transforma- 
tions representing time translation of the system. Reversibility corresponds 
to existence of inverses. Write the solution of (20) as 

x ( t ) = T ( t ) x ( O )  (26) 

Here x(0) is the value of x [defined by (24)] at t =0,  x( t )  its value at time t 
obtained by integrating (20), with (T(t)} the corresponding group of 
time-displacement operators on x. T(0) is the identity, and using concatena- 
tion to express the group operation, we have 

r( t , ) r( t2)= r(t, + t2)= r(t2)r(t,) (27) 

with T ( -  t) the inverse of T(t). In QM we have 

T( t )  = e x p ( -  i H t / h )  (28) 

the unitary group in Hilbert space for Hermitean H, and q5 places x in (26). 
Reset transformations, being many-one,  have no inverses. It is thus 

impossible for a reset transformation to belong to the set T( t ) either classically 
or quantally. A physical reset transformation can therefore only be an 
external intervention in the history of a system, i.e., a preparation act, a 
setting up of a new initial condition. Conversely, a procedure which takes a 
system in any of some class of states and prepares it in some particular state 
is a reset procedure and irreversible. This generalizes the operational discus- 
sion of Rothstein (1957, 1974) and shows how the time-evolution group 
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generalizes to a time history monoid when external interventions occur. Group 
character can only be restored by redefining the svstern to include the interven- 
tion means thereby exporting the irreversibilitv into a new initial condition 
(setup charge), exactly as in the discussion of Loschmidt's paradox in the 
references just cited. 

3. TURING MACHINES,  UNDECIDABLE QUESTIONS,  AND 
BIOLOGY 

The FSA has limited information storage capacity. The most general 
model of computation thought possible is the Turing machine (TM). It 
consists of an unbounded tape memory and an FSA which can access it. For 
convenience the tape is ruled into squares (side equal to tape width) which 
can contain any symbol of tape alphabet F or a "blank." All inputs are read 
from, and all outputs are printed on the tape, by the FSA (also called finite 
state control or simply control). Indexing the squares by the positive 
integers, and calling the square currently scanned by the FSA its address, 
permits the following definition of a "move" of the TM. In (current) state 
qi, scanning symbol (input) sj, the machine prints (output) s k, and moves 
left or right to an adjacent square in (next) state qt. Behavior of the machine 
for all time is determined by the table of possible moves and the initial 
configuration (% ,  a, i). Here q0 is the initial state of the FSA, a is the initial 
string over F printed on the tape, and i is the initial address. The FSA also 
usually has a set of final states, F; when one is entered the computation 
halts. The table of moves can be given as a list of quintuples or as a 
so-called functional matrix; either expresses the mapping 

T : Q X F ~ Q x F •  (29) 

Here 

M = ( L , R }  (30) 

meaning that the FSA moves either left (L)  or right (R). Two-way move- 
ment is essential; restriction to one-way movement makes the TM equiva- 
lent to an FSA. No additional generality is obtained by augmenting set M 
by S ("stationary"), corresponding to no change in address, or by using 
two-way infinite or multiple tapes (including infinite multiplicity, say cells 
in an unbounded M-dimensional space). No additional generality results if 
the finite control is nondeterministic, if the squares can hold strings of 
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symbols rather than a single symbol, or if the finite control can make big 
jumps to the next address (including vector jumps in high dimensionality 
tape space). No additional generality results from the use of multiple 
automata, up to and including having an automaton stationed at every 
square, with communication means provided between them. These and 
other clever devices make tremendous difference in the speed with which 
computations can be carried out. The modern high-speed general purpose 
computer is a universal TM (defined below) sped up by such means. 

The universal TM, U say, is one which can simulate an arbitrary TM, 
T. States, symbols, and moves of T are encoded as strings over the alphabet 
of U, and the encoded functional matrix (list of quintuples) of T included, 
along with the encoded initial configuration of T, on the tape of U. The 
states, symbols, and moves of U are designed to enable U to carry out a 
universal simulation algorithm, whereby it processes the string describing 
the initial configuration of T, taking it through encoded versions of the 
configurations through which T would pass, and halting when a configura- 
tion corresponding to one at which T halts is reached. Proof of existence of 
U is constructive. One can regard U as a general purpose machine which 
carries out the program to which T corresponds. Arbitrary T can be 
regarded either as a specific (special purpose) machine or as the algorithm 
or procedure it executes. We can view U as a specific machine or as an 
ensemble of potential machines (incomplete machine) which turns into an 
actual machine when provided with a program. 

Turing (1936, 1937) invented both T and U to shed light on problems 
in the foundations of mathematics, particularly decision problems. Goedel 
(1931, 1934) had shown that in any formal system M broad enough to 
include arithmetic, (a) one can exhibit arithmetic propositions of rather 
elementary nature which are evidently true yet cannot be deduced within M 
(i.e., if a deduction existed it would imply a contradiction), and (b) the 
consistency of M cannot be deduced in M (i.e., if M could be proved 
consistent by means contained entirely within it, it would be inconsistent). 
As the class of systems like M includes systems like the predicate calculus 
and calculus of sets, there was a tremendous intellectual upheaval and many 
attempts to get around these theorems on the completeness and consistency 
of formal systems (a complete system is one in which every theorem true in 
the system is provable within the system, a consistent one never leads to proof 
of a contradiction). As discussion often bogged down in cloudy questions of 
semantics, Turing sought to play the formal system game in a way so 
formalized that even a machine could do it. He simulated the way a logician 
or mathematician would test the validity of a proof within a given formal 
system, using a finite set of rules for manipulating symbols and a conceptual 
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machine which followed those rules. Goedel's theorems not only were not 
evaded but assumed particularly illuminating forms, the most famous being 
the algorithmic unsolvability of the halting problem for Turing machines; 
the problem is as follows. Given an arbitrary TM, T, and an arbitrary string 
ct for it to process, will T ever stop computing, say by entering a state 
q / E  F?  To answer the question we need a general procedure, i.e., a TM, 
which takes a properly encoded version of T ' s  table and a, and computes 
"yes" or "no."  Turing showed such a TM does not exist. 

Many undecidable questions (equivalently, noncomputable numbers) 
are now known. A frequently used proof of undecidability for a particular 
question is to show that existence of a decision method implies solving the 
halting problem. For example, can one decide whether, during the course of 
a (general) TM computation, a particular configuration will actually occur, 
i.e., is the latter accessible from the initial configuration? The answer is no 
(take occurrence of the particular configuration as the halt condition of an 
essentially identical associated TM). This has been used to argue the 
unpredictability of evolution (and history or psychology for that matter) 
even in a "perfect" theoretical biophysics by Rothstein (1979). 

Discussion of physical Turing machines introduces no physics not 
already discussed in Section 2; the only novelty is the infinite tape. It is both 
external information source for the FSA and object prepared which carries 
its stored output. It has no upper bound to its information storage capacity, 
but at any time only a finite amount of tape will have been in interaction 
with the control. The infinite tape ("buy more tape if you really need it") is 
an idealization no less justified than t ~ oo ("wait longer if it makes a real 
difference") for coming to equilibrium or x ~ oo ("go out further if it makes 
a real difference") for a beam scattering problem, ordinarily. Exceptions 
could arise for computations so complex that the tape needed would more 
than exhaust all the matter in the known universe, say. While such computa- 
tions can easily be devised, their ad hoc and bizarre nature is not yet likely 
to trouble theorists in physics or biology. It thus still seems reasonable to 
expect future scientific theory, when formalized, to remain calculable in 
principle on a Turing machine, and therefore guaranteed to contain unde- 
cidable questions, to be incomplete, and if completeness be forced, to 
become inconsistent. It is true of present theories, including quantum 
mechanics; the connection between this and EPR is considered in Section 4. 

In science there are famous impediments to complete knowledge about 
the universe posed by relativity (arising from the finite velocity of light) and 
quantum mechanics (uncertainty principle, complementarity). Thermody- 
namics also sets limits on how well the state of the universe, or any part of 
it, can be known as a result of measurement, This results in the existence of 
physically undecidable questions grounded in the first and (particularly) the 
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second law of thermodynamics. These have been investigated in Rothstein 
(1959, 1964). We have long felt that in the physics of the future all 
undecidable questions ought to be derivable from the Goedel-Turing 
species of undecidability (see the comment on Reference 10 in Rothstein, 
(1967), and sensed that the key to showing it might emerge from mutual 
confrontation of all the "undecidabilities." We believe progress has been 
made along this line in Section 4, but must first define "undecidable" 
operationally. 

Any physical system can be viewed as a (special purpose) computer 
programmed to simulate that system. Anything observable in the operational 
sense must be computable (predictable) within the formal system constituting 
the theory of that physical system if the theory is complete. We can always 
read the tape output (measurement of the time-evolved prepared system) 
computed from the operationally defined tape input (specification of the 
operationally prepared state of the system). If, therefore, two equally 
competent, non-mutually-interfering observations of an evolved state con- 
tradict each other, either the underlying theory is inconsistent, or the 
observed situation is one where the theory cannot decide between them. 
With respect to such a decision the theory is therefore incomplete: if it were 
not it would be inconsistent. This is not a defect of the theory, for it is 
inherent in all formal systems. We argue in Section 4 that irreversibilitv of 
measurement is what preserves quantum formalism from contradiction. We 
believe this supports the idea that the second law of thermodynamics is like 
a Goedelian theorem for the underlying fundamental dynamics. 

We close this section with a few remarks on theoretical biology (most 
also apply to psychology and social science), where one might expect to 
encounter many undecidable questions. The axiomatic-deductive nature of 
mathematics has been formalized by modem theories of computability in 
such a way that few doubt the essential equivalence of formal theories and 
Turing machines. Modern general purpose computers are Turing machines 
capable of calling vast numbers of computationally efficient routines. This 
contrasts sharply to logical "atom-by-atom" TM operation. Nowadays, one 
no longer constructs a TM to embody a theory (except for didactic reasons 
or to study questions about foundations). Rather one writes programs to 
make theoretical predictions. But the primitives of the theory come from 
thinking about real phenomena, for the efficient discussion of which theory 
is invented. Theory, after all, is essentially a language (or collection of 
languages) for discussing the world of observation and experiment. Im- 
proved theories are becoming more and more synonymous with better 
programs or computers for that purpose. Computer paradigms for biology 
are conceptually and philosophically neutral in the sense that any logical 
theory now comes under that paradigm. 
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4. IRREVERSIBILITY AND QUANTUM MEASUREMENT 

The operational arrow of time is pointed by the possibi# O, of acquiring 
information in the future. As dynamics (classical or quantum) is invariant 
under time reversal the arrow direction is undecidable in those theories! In 
the sequel we show that quantum characterization of the measurement 
process shows that quantum mechanics is indeed incomplete in both Goedel's 
and Einstein's senses (here identical). Denial of incompleteness entails 
inconsistency: we can construct mutually exclusive quantal descriptions of 
the same physical situation with equal operational legitimacy. The macro- 
scopic requirement of irreversibigty of measurement (uses of mixtures rather 
than wave functions to express results of measurement, preparation, or 
information acquisition) saves the theory from formal inconsistency. 

The argument resembles the Einstein-Podolsky-Rosen paradox, 
Einstein (1935), but goes beyond it in two respects. First, measurements are 
made (of complementary observables) on both of the separated partial 
systems, and second, the macroscopically recorded results are observed by 
an ensemble of macroscopic, mutually noninterfering, Lorentz-equivalent 
observers. These fall into equivalence classes, in the sense that all members 
of the same class agree on the appropriate quantum descriptions of the 
results, but members of different classes have inconsistent descriptions until 
the wave functions they use are replaced by mixtures. In short, the quantum 
descriptions, though complete, are not objective, i.e., inconsistent, while the 
objective descriptions are statistical mixtures and so are not complete. The 
mathematical argument is elementary. 

As in EPR, let a compound system St2 with wave function ~b12 split into 
spatially separated subsystems S t, S 2 with respective wave functions +~, ~b 2. 
Let {u]} and { u 2} be complete sets of eigenfunctions of observable U for S t 
and S 2, respectively, likewise {v]} and {%a} for the incompatible observable 
V. We can expand ~2 in two different ways, namely, 

~12 2 U I 2 (31) = C i IIi  U i 

i 

+,2=~]cyvlv~ (32) 
i 

where the cy and c]" are expansion coefficients. 
As in EPR, measuring U on S 1 gives (suppressing the now superfluous 

subscript i) 

@1 = u' (33) 

~12 = /'/I/32 (34) 
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whence the wave function of St, measured to be u ~ directly, requires the 
inference that the wave function of S 2 be u 2, which we write 

~b2(1) = u 2 (35) 

indicating explicitly that this function for g'2 is conditioned on a measure- 
ment made on S t. Similarly, if we measure V on S 2 we get 

+ z = V  2 (36) 

~12 = vlv2 (37) 

q,,(2) = v' (38) 

If both measurements are carried out independently on the separated 
systems with a spacelike interval between the two measurement events, then 
the totality of Lorentz-equivalent observers splits up into two large classes 
and a singular (small) class as follows. One large class, L l say, notes the 
result of measuring U on S~ before being able to note the result of 
measuring V on S 2. A second large class, L z, sees the result of measuring V 
on S 2 before the result of measuring U on S 1, while the singular class L 0 (the 
only nonrelativistic one) sees the results of both measurements simulta- 
neously. 

Observers in L 0 receive apparently equally valid, but mutually con- 
tradictory, pieces of information about each system, namely, that the state 
of S~ is both u ~ (measured directly) and v I (inferred indirectly from the 
directly measured state of $2), while S 2 is assigned state v 2 (directly) and u 2 
(indirectly). But since U and V were chosen as complementary observables, 
neither S~ nor S 2, according to quantum mechanics, can simultaneously be 
in the pair of eigenstates assigned to it. We have two mutually exclusive 
descriptions of the state of each system. One might argue that the double 
intervention so decouples S~ and S 2, that the measurements have prepared 
SI in state ut, S 2 in state v 2, and that the inferred states are thus incorrectly 
inferred. But how should S~ and S 2 "know"  this is wrong if they are widely 
separated? One might dismiss this as ignorance of the answer to EPR given 
in Bohr (1935), but it is harder to dismiss the following. Because S l and S 2 
have become independent systems, U measured on one commutes with V 
measured on the other. The eigenfunctions of this U |  or V |  operator 
are x~y j, where the x ' s  and y ' s  can be freely chosen as u 's  or v's, while i and 
j are 1 or 2. But there can be no quantum observable U |  for St? such that 

+l = ~  u |  2 (39) 
.~C i UiVi 
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o r  

r = E (40) 
i 

Einstein can now laugh and say that QM is incomplete because only half of 
the logically possible and operationally permissible distinct experimental 
situations find their place in quantum descriptions of S~2, though all are 
admitted in the theory of S~| 2. 

We believe the only way to respond to this criticism which does not 
dodge or befuddle the issue is to admit its truth and to understand what it 
means. The change from S~: to S~| 2 is a real change in the specification of 
the system, equivalent to putting an impenetrable wall between S~ and &,  
as in Lamb (1969). There is an entropy or free energy price to pay for this 
macroscopic act of preparing the system anew as discussed earlier, and 
simply illustrated by the following thought experiment. 

Consider a container of volume 2V with a slidable partition P capable 
of dividing it into two mutually inaccessible regions, each of volume V. 
With the partition out introduce two systems A and B. They can be thought 
of as molecules in the spirit of Maxwell and Gibbs. Because they are free to 
interact (e.g., collide in billiard-ball fashion), we can consider them to be a 
compound system AB. Now introduce partition P. There will be four 
macroscopically distinguishable, mutually exclusive and exhaustive situa- 
tions which we designate as PAB, APB, BPA, and ABP. They respectively 
represent both A and B to the right of P, A to the left and B to the right of 
P, B to the left and A to the right of P, and both A and B to the left of P. 
As in Szilard (1929), acquisition of information as to which of the four 
situations actually results entails an entropy cost AS of k in4  if the four are 
viewed as equally probable a priori. If A and B are identical molecules, the 
Gibbs paradox forces identification of APB and BPA, reducing AS to k In 3, 
If A and B are so strongly attracted to each other that there is negligible 
probability of their ending up on opposite sides of P, or if their mutual 
repulsion is so great that there is negligible probability of finding them on 
the same side of P, AS becomes kln2.  In any case, as long as there is no 
reason to say A and B will prefer the left or right volume I7, and even if the 
energy AE needed to slide P in is zero, the entropy cost of making the 
distinctions contemplated is in the range of one or two times kln2. 

We can translate the thought experiment into a description of the 
earlier discussion of the quantum situation. The systems S~ and S 2 replace A 
and B, with SI2 corresponding to the partial systems in direct interaction, 
i.e., constituting a single system before separation (volume 2V), while the 
introduction of P represents the fourfold splitting of S~2 into the separated 
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system S~| 2 and the choice of U or V for measurement on each one (left 
or right). Then ABP corresponds to the usual EPR situation in which U is 
measured on one (or both) subsystems, and PAB to the analogous case for 
V. The cases APB and BPA, belonging to no quantum observable meaning- 
ful on S~2, correspond, respectively, to measuring U on SI and V on S 2 or V 
on SI and U on S 2. They are certainly operationally and macroscopically 
meaningful nevertheless. So Einstein's charge of incompleteness for quan- 
tum mechanics seems irrefutable in a real sense, but the incompleteness is 
much like the puzzle of irreversibility faced by Boltzmann or Gibbs in the 
classical case. In both the classical and quantal situations the fundamental 
dynamics is reversible, so a new consideration must be introduced, of necessi- 
ty not derivable from the dynamics, to explain irreversibility. Historically this 
has been either an assumption of molecular chaos or an appeal to coarse- 
graining and the phase-space streaming entailed by Lionville's theorem. The 
latter, as shown in Rothstein (1957, 1974), corresponds neatly to the 
operational situation, for any operationally defined measurement or pre- 
paration scheme corresponds to splitting phase space up into cells of 
measure corresponding to the operationally distinguishable alternatives 
involved. Phase space streaming then spreads the ensemble of representative 
points of any one cell into a filament threading many cells. Now distinctions 
between points of any one cell are operationally undefined within the 
specification by which the cells are defined. The dynamical evolution of the 
ensemble corresponding to maximal information or most precisely con- 
trolled preparation (one cell) thus requires monotonic increase in the 
number of cells needed to cover the set of streamed representative points. 
As the entropy is k log q~ where ~ = NAt, with Ar the phase volume of a cell, 
and N the number of cells threaded by the filament, we get monotonic 
entropy increase. But note the change in what corresponds to a system in 
going from the microscopic to the macroscopic (i.e., operational) situations. 
The representative point (representing a microscopic system) is suddenly 
replaced by an ensemble of points (representing a macroscopic system). 
Ensembles spread, points do not. The irreversibility results from the transi- 
tion from a (hidden) microscopic situation to the operational macroscopic 
situation, which demands an ensemble description. Similarly the entropy 
increase associated with any contemplated measurement scheme or prepara- 
tion act in QM stems from a macroscopic source. It implies mixtures (and 
loss of some phase information) rather than pure states to describe the 
results. The incompleteness of description only implicit in the classical case 
becomes explicit in the quantum case. It is a virtue of QM, rather than a 
shortcoming, that this is so. We believe that any successor microscopic 
theory to current quantum mechanics will of necessity display similar 
incompleteness when measurement or irreversibility is analyzed operation- 

ally. 
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We discussed the class L 0 of equivalent observers in detail, despite its 
singular nature, for several reasons. First, it is the only case that comes up 
nonrelativistically. As Schr6dinger's equation is nonrelativistic this case had 
to be examined. Second, it permitted discussion of the problems of com- 
pleteness, irreversibility (both of measurement and in general), and their 
connection with ensembles and the change in viewpoint on going from 
microscopic or macroscopic. Third, this could be done without mixing in 
questions of subjectivity, objectivity, consistency, and causality. These are 
involved for the classes L~ and L 2, which we take up next. 

Historically, questions about the completeness of QM were motivated 
by a requirement that fundamental theory describe what is physically 
"real." The Einstein-Bohr debates (Schilpp, 1949) showed how subtle and 
elusive that concept could be. But surely all can accept that what competent 
observers agree on (i.e., what can be therefore called objective) stands a 
much better chance of being "real" than what competent observers disagree 
about (which we can label subjective). I f  two conflicting statements are 
equally well grounded in fundamental theo~, the theor3, is inconsistent unless 
the question as to which one is correct is undecidable in principle, i.e., the 
theory is incomplete. As Goedel showed that no theory complex enough to 
include arithmetic could be proved, within the system, to be both consistent 
and complete, it is not to be counted as defect of QM if such a case is shown 
to exist in it. We now exhibit one. 

The class of observers LI records results of the following procedure. 
Measurement of U on SI is followed by measurement of (incompatible) V 
on S 2, where the measurement events are separated by a spacelike interval. 
By (31), (33), (34), and (35) this means S l is found to be in state u 1, forcing 
S 2 to be in u 2 until measurement of V puts it in state v 2. Similarly the class 
L 2 observes a measurement of V on S 2 followed by measurement of U on 
S~, the two events being separated by a spacelike interval (interval signature 
is preserved under Lorentz transformation between L~ and L2). By (32), 
(36), (37), and (38) this means S 2 is found in state v 2, forcing S~ to be in 
state v I until measurement of U puts it into u ~. So L~ and L 2, who are 
equally competent if one accepts special relativity, disagree about what the 
states of S~ and S 2 are during the interval between measurements. Both 
views, after one measurement, are therefore subjective, i.e., inconsistent with 
each other. They agree on the results produced by carrying out both 
procedures, which therefore are objective, though not consistent with any 
eigenfunction description of S~2 unless it be a mixture. 

The foregoing shows that, if measurement can prepare a pure state, the 
same operational situation can be described by mutually exclusive subjective 
wave functions, by equally competent observers. The assumption that a pure 
state is a complete description (of an objective "reality") thus leads to 
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contradiction (formal inconsistency). The objective description of that situa- 
tion, on the other hand, is consistent, but necessarily incomplete. The QM 
description of $12 can only generate mixtures as objective states of SI|  2, 
or, what is the same thing, irreversibility inheres in the acquisition of 
objective information about, or the preparation of, a real system. In a sense, 
this derioes the second law of thermodynamics, via relativity, as a necessary 
condition for the operational consistency of quantum mechanics. This in turn, 
as shown in Rothstein (1957, 1964), leads to decay of relevance of informa- 
tion about the state of a closed system for predicting or retrodicting its state 
in the remote future or past, respectively. The process is formally identical 
to approach to equilibrium; information decrease is proportional to entropy 
increase. It can also be equated to a weakening of causal connection in the 
sense that correlations between a state as measured or prepared at some 
time t o and states increasingly remote in time from it approach zero. Also, 
time does have an arrow, corresponding to the actual entropy increase 
accompanying measurement or preparation. This differs physically from the 
conceptual increase in fuzziness associated with retrodiction even though the 
formalism is symmetrical, for the latter admits no new possibilities for 
measurement or preparation acts on past situations. 

Turning now to computation and biology, we see that the coupled 
chains of selective acts (many chains can go on in parallel) which constitute 
their characteristic behavior inherently demand cooccurring dissipation of 
free energy. Although the rate of energy dissipation in computers can be 
enormously reduced by miniaturization or low-temperature operation, there 
is an irreducible entropy increase associated with each selective act. This 
inheres in the operational situation for all physical SSs. It is not clear that a 
minimum energy price, independent of temperature, for imposing or relax- 
ing a constraint need exist, from a fundamental point of view. 

Though computers and living things are macroscopic systems, they 
(and other SSs) differ in a fundamental sense from what physicists normally 
mean by the term. A general purpose computer without a program does not 
compute. It is inert. It becomes a specific computer when given a program, 
and the machine ordinarily behaves differently with different programs 
(whether two programs or algorithms are equivalent is not decidable in 
general, however). So a computer (or conditionable, teachable, adaptable 
living thing) can sometimes be conveniently viewed as an incompletely 
specified machine, as an ensemble of possible machines, or as a single 
well-specified machine responding to a well-defined class of inputs con- 
taining both program and data to be processed in accordance with it. In 
living things a microscopic event can alter a genetic program, say, making 
the engineer's or physicist's way of specifying the system difficult to realize, 
to say the least. The practice of the biologist to secure homogeneous 
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populations by selective breeding, cloning, or the like, may long be the only 
practical way to "prepare," or initiate a complex preparation procedure, 
serving to define a particular kind of living SS operationally. 

Progress in theoretical biology, we believe, needs help from more than 
physics and biology. It needs help from computer science, where SSs can be 
studied without quantum complications, and where any behavior which can 
be described by either a statistical, mathematical, or logical theory can be 
modeled. In particular, reconfigurable systems consisting of interacting 
subsystems should be studied intensively. We do not deny the importance of 
quantum mechanics for biology, but believe too exclusive a preoccupation 
with it would tend to neglect some crucial things. They are first that SS 
behavior is only "piecewise quantum mechanical" in each sufficiently small 
subsystem in the intervals between irreversible actions. At the grosser level 
of description in terms of such actions ("bit level") computerlike models 
seem very appropriate. At this level much of the thermodynamic- 
macroscopic-engineering way of dealing with systems seems proper, aug- 
mented by the computer-scientist's approach. The second crucial area is 
where the microscopic meets the macroscopic, where nonequilibrium 
thermodynamics meets the time varying SchrOdinger equation, where mea- 
surement, information, irreversibility, control, and metastability meet com- 
putation and system reconfiguration. We believe many future battles of 
theoretical biology will be fought here, along with many highly relevant 
skirmishes in the area of fundamental limits on computation. 

5. CONCLUDING DISCUSSION 

A number of aspects of the statistical thermodynamics of physical 
systems capable of exhibiting selective behavior have been studied. The class 
of such systems includes computers and measuring apparatus, and to the 
extent it is justified to consider living systems as being physical systems, 
includes them as well. 

Some of the chief results are the following. There is an irreducible 
entropy increase associated with every selective act, which depends on the 
selectivity of the act and thus applies to any system capable of doing it. This 
constant entropy increase persists even as absolute zero is approached (this 
may well lead, therefore, to a generalized form of the third law of thermody- 
namics). However, there is no evidence for a temperature-independent 
minimum energy cost, characteristic of the act, but there is the usual 
quantum limit characteristic of the particular system performing the act. 

Since measurement (or preparation) was shown to be both the essence 
of selective behavior, and the source of irreversibility on phenomenological 
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grounds, it became necessary to examine both computation and measure- 
ment per se from as fundamental a view as possible. This meant both the 
logical and quantum levels, the first being foundations of computability, 
formal systems, automata, Turing machines and Goedel's theorems, the 
second being an examination of how measurement linked up with the 
theoretical structure of QM. The result was that irreversibility of measure- 
ment was needed to prevent QM from asserting a contradiction in the form 
of mutually exclusive, equally justified assertions about the state of a 
system. The connection with the historic debate between Einstein and Bohr 
was exhibited and hereby declared a draw. Goedel's theorems show that 
true theorems can exist in a formal system which are not provable in the 
system (i.e., the system need not be complete) and that the consistency of a 
system (i.e., proof within the system that no contradiction could ever be 
derived) was such a theorem. Analysis of subjectivity, objectivity, complete- 
ness, and consistency for quantum measurement then showed, in effect, that 
implementation of Einstein's requirement of completeness for QM would 
make it inconsistent, but that his notion of physical reality might be true but 
capable neither of proof nor disproof. Now one can always augment the 
axioms of a consistent but incomplete formal system with a new one, 
consisting of a theorem which is true but not provable in the system, to 
obtain a new consistent system. All true theorems of the original system 
remain true in the new one, but many new true theorems now become 
accessible by proof. So Einstein's program of trying to find a theory, from 
which QM can be derived, but which would go beyond it in directions where 
QM must be mute, is both a logical possibility and an intellectual challenge. 

The computer paradigm for biological theory is philosophically neutral 
in the following sense. Any theory deserving the appellation " theory"  can 
be logically modeled by a suitable Turing machine. Furthermore, one can 
construct a big TM from others, which become its submachines. Now as 
biological mechanisms become better understood, they become amenable to 
theoretical formulation and thus to computer simulation. If all the mecha- 
nisms were understood the corresponding programs could all be put to- 
gether to form a large program of which the original programs are now 
subroutines. The corresponding Turing machine would be a computer 
model for biology, The method, being applicable to any theory, does not 
bias the theory philosophically. Computer models are ways of talking about 
real systems of interest in computationally, mathematically, and logically 
efficient ways, with tremendous data storage, retrieval, and reduction capa- 
bilities besides. Specific computer models will become outmoded and dis- 
carded, but computer models as a class will never become outmoded as long 
as theory, mathematics, and logic retain their meanings. 
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